Wind-Driven Rain Studies. A C-FD-E Approach

Summary

Wind-driven rain studies provide the main input to problems such as:
- post-ignition protection,
- sealing, drainage accumulation.
A Computational Fluid Dynamics (CFD) methodology is developed and used to compute
- trajectories and local intensity factors for generic buildings,
previously tested in the wind tunnel. The methodology is further applied to investigating real problems such as the role played by cornices in protecting the upper part of a low-rise building or the wetting and downwash on a sloped face of a high-rise building.

METHODOLOGY, Models:

- **Wind flow around buildings:** Navier-Stokes, continuity, turbulence models
- **Raindrops, size distribution:** mass fraction of droplets larger than d, $M(d) = \exp\left(-\left(d/d_0\right)^n\right)$

 with $d = bR_{u0}$—mean diameter, n spread parameter, and R_{u0} the undisturbed rainfall intensity
- **Trajectories (Lagrangian):** $\Delta x = F_T (u - u_p) + g R_{p - \rho} = \frac{1}{\rho u_p^2} \frac{\Delta x}{\Delta t} 24$

 Stokes drag, u_p and u_p wind and particle velocities.
- **Impact:** Local Intensity Factor LIF_j—the rainfall intensity on each building zone, R_i, reported to undisturbed rainfall intensity R_0.

EXPERIMENTAL versus NUMERICAL RESULTS

APPLICATION – Cornice Effect for Low-Rise Building:

Cornice effect: $F_j = \text{ratio (for every zone) between the LIF's without and with cornices}$

$$F_j = \frac{\text{LIF}_j}{\text{LIF}_{j}} \quad \text{without cornice}$$

If $F_j > 1$ cornice has positive effect

If $F_j < 1$ cornice has negative effect